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It is proved that a critica.1 level, at which a wave packet is neither reflected nor 
transmitted, can exist only if the wave normal curve, which is formed by taking 
the cross-section through the wave normal surface in the plane of propagation, 
possesses an asymptotewhich is parallel to the direction of variation of the proper- 
ties of the medium through which the wave packet moves. This condition, when 
applied to various types of hydromagnetic waves (such as hydromagnetic waves 
of the inertial or gravity type, or slow magnetoacoustic waves), shows that critical 
levels for such waves can exist only if the direction of spatial variations of the 
medium is perpendicular to the ambient magnetic field. Provided that the angle 
between the gravitational acceleration, or the rotation axis, and the magnetic 
field is not zero, hydromagnetic critical levels, characteristic of the gravity or 
inertial type, act like ‘valves’ in the sense that the wave packet can pierce the 
critical level from one side and is captured from the other side. It is also pointed 
out that critical-level behaviour is to  some extent a consequence of the WKBJ 
approximation since the other limit, namely when the waves feel an almost 
discontinuous behaviour in the properties of the medium, gives markedly dif- 
ferent results, particularly in the presence of streaming, which can give rise to 
the phenomenon of wave amplification. 

1. Introduction 
The concept of a critical level, a t  which a wave packet is neither reflected 

nor transmitted, emerged from a study, using the WKBJ approximation, of 
the propagation of internal gravity waves in a shear flow (Bretherton 1966). 
Subsequently, a more refined analysis (Booker & Bretherton 1967) showed that 
a gravity wave group can be transmitted through a critical level but is heavily 
attenuated for Richardson numbers of the order of unity or greater. More 
recently it has been pointed out (Acheson 1972; Rudraiah & Venkatachalappa 
1972) that hydromagnetic wave groups in stratified rotating fluids can also 
exhibit ‘ critical-level ’ behaviour . 

One of the purposes of this paper is to point out that the existence of a critical 
level for any type of wave propagation in a stratified medium depends on the 
wave normal surface reaching to  infinity in a certain manner. In fact, in the next 
section we prove that i f  the wave normal curve, formed by taking the cross-section 
through the wave normal surface in the plane of propagation, possesses an asymptote, 
a critical level can exist provided that the properties of the medium vary in a direction 
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purallel to the asymptote. This condition provides a more unified view on the pos- 
sible existence of critical levels than has been recognized hitherto. 

In  0s 3-5 we discuss the propagation properties of various types of hydromag- 
netic waves (vie. hydromagnetic-gravity waves, magnetoacoustic waves and 
hydromagnetic-inertial waves) in terms of the geometry of their corresponding 
wave normal surfaces. We find, on applying the condition for the existence of a 
critical level, that such waves exhibit critical levels provided that the direction of 
sputial variations of the medium is perpendicular to the direction of the magnetic 
field. I n  addition, hydromagnetic waves approach their critical levels from one 
side only. The rea,son for this behaviour, which contrasts with that of gravity 
waves in a shear flow, is that the asymptote of the wave normal curve is ap- 
proached from only one side. In  the case of hydromagnetic-gravity waves and 
hydromagnetic-inertial waves the ray can pass through the critical level from 
one side but not from the other. In  this sense such critical levels behave like ‘valves’. 
This effect was first discovered in the context of hydromagnetic-inertial wave 
propagation by Acheson (1972), who also emphasized the important proviso 
above. Diagrams illustrating typical ray trajectories (of which there is a rich 
variety) for the various types of waves are obtained by using the geometry of the 
wave normal surfaces. 

In  the concluding section we point out that critical-level behaviour must 
somehow be a symptom of the WKBJ approximation (which is incapable of 
accounting for partial reflexions) since the other asymptotic limit, in which the 
waves experience an almost discontinuous jump in the properties of the medium, 
yields very different results. An exact analysis would probably yield a curve 
(or curves), in the parameter plane of the vertical wavelength normalized by 
the scale of variation of the medium versus some other parameter characterizing 
the medium (e.g. the Richardson number in the case of a shear flow), which 
separates these two regimes (Jones 1968; McKenzie 1972). 

2. The condition for a critical level in wave propagation 
For simplicity we confine our discussion to the propagation of waves, in the 

WKB approximation, in a medium whose properties vary with only one Cartesian 
co-ordinate, x say, and we orient the horizontal co-ordinate, x say, along the hori- 
zontal direction of propagation. The equations of the system in general yield a 
dispersion equation 

which relates the frequency w to the wavenumbers k, and kB at each ‘altitude’ z. 
Alternatively, since the properties of the medium vary in the x direction (1) 
can be regarded as determining kB a t  each height, so that (1), solved for ka, can 
be written as 

(Equation (I), solved for Ice, can yield more than one branch, so we fix our 
attention on one branch (or mode).) The trajectory of a wave packet (a ray) 
is given by (see, e.g. Lighthill 1965) 

q w ,  Ic,, Ic,, 2) = 0, (1) 

(2) kz = kB(@, k$, 4. 

ax a@ a q a k ,  z=arc,=ao/awy (3a)  
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in which w and k, are conserved along the path of the ray. Dividing (3  a )  by (3  b )  
to eliminate t we obtain 

(4  a)  
dx aD/alc, ah2 
az aD/ak2 ak,' 
-=-- - -- 

which is the equation for the ray trajectory in the z ,  x plane, and can be put in the 
integral form 

x + constant = - dz -. ( 4  b )  1 :: 
We can regard (1) or (2) as defining a curve (the wave normal curve) in the kz, 
k, plane for any fixed values of w and z. If for some range of values of z the wave 
normal curve possesses an asymptote such that kz --f a0 as k, -+ k,(z) a critical 
level can exist at an altitude z, given by 

Ic, = km(zc)* ( 5 )  

This follows from (4a ) ,  which shows that dx/dz and all higher derivatives are 
infinite at  z = z,. 

For example if, for some range of values of z ,  the wave normal curve is asymp- 
totic to a line k, = k,(z) such that 

Ic, illkrJ(4 -kxlP (P ' 01, (6) 

x N i / ~ Z , - - x ~ ~ .  (7) 

equations (4 )  show that the ray approaches a critical level ( z  -+ 2,) in the fashion 

Consider the familiar case of the propagation of gravity waves in a shear flow. 
The dispersion equation (Bretherton 1966) is 

ki = N";/(w - k, Ux(z))2 - k;, ( 8 )  

in which Nis the Brunt-Vaisiilii frequency, U,(z) is the horizontal wind speed, and 
we restrict attention to the propagation in the x ,  x plane of a wave packet with 
dominant frequency w and horizontal wavenumber k,, both of which are con- 
served along the ray trajectory. The wave normal curve (given by (8)) possesses 
an asymptote of the form given by (5) in which we now have 

k,@) = w/U,(z) (P = 1). (9) 

Thus the ray approaches a critical level at z = z, in the fashion 

for U ( z )  < w/k,  (ha < 0,  upward propagation), 

{ l / ( z c - z )  l / ( z - z , )  for U ( z )  > w/kX (ks < 0, downward propagation), 

(10) 
in which z, is given by 

We have assumed that the wind speed increases smoothly with height. Equation 
(10) states that the critical height occurs where the horizontal phase speed 
matches the wind speed. The reason why a gravity wave can be captured on either 
side of x, is that the asymptote of the wave normal curve is approached from both 
sides. 

Ic, = km(Zc) = ~ / u x ( z c ) .  
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FIU~RE 1. Gravity wave ray trajectories in a horizontal wind with speed U increasing with 
altitude. The rays labelled 1 and 2 axe generated below and above the critical z = z, at 
whioh they are captured; w/k,  = U(z,). The ray labelled 3 propagates against the wind and 
is reflected at z = z,; I(N k w)/kOI = U(Z,,). 

By noting that the ray is normal to wave normal curve we can readily follow the 
path of the ray, along which w and k, are conserved, by constructing the shapes of 
the wave normal curve at successive values of x for any assumed variation of the 
properties of the medium with 2. This geometrical construction (Lighthill 1967) 
has been used to construct the ray trajectories shown in figures 1, 3, 4, 6 and 9. 
We note that a wave packet propagating against the wind (w/i& < 0) follows a 
looping trajectory, being reflected at  a level where its frequency, as measured 
in the rest frame (w’ = w - UIE,), matches the Brunt-Viiisalii frequency N .  

3. Hydromagnetic-gravity waves 
In  this section we consider the propagation properties of hydromagnetic- 

gravity waves in a highly conducting, incompressible fluid (Lighthill 1967; Hide 
1969). One mode of motion corresponds t o  the component of the vorticity 
parallel to the magnetic field being propagated a t  the Alfvkn speed along the field 
lines. The okher mode of motion, which involves an interaotion between the 
magnetic and buoyancy forces, is governed by the dispersion equations 

w2 = W(& x k)2/E2 + (b. k)2, (11) 

in which a is the unit vector a,long g; N ,  the Brunb-Vliisala frequency, and b, 
the Alfven velocity, are given by 

N 2  = PO19.VP0, b = B,/(Pu,fO)*, (12) 

where po is the equilibrium density and Bo is the ambient field strength. When 
N and b are slowly varying functions of position ( 11) can be regarded as the local 
dispersion equation. 
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FIGURE 2. For legend see p. 715. 

I f  the normalized variables w and R‘ given by 

w = w/X,  R’ = (X’ ,  Y’,Z’) = k/(N/b)  

are introduced (1 1) may be written as 

X‘a+ Y’2 

x’2+ Y’2+22 
w2 = + (X’ sin a + 2‘ cos a)2, 

in which we have taken the Z’, X’ plane to contain g and B,, and a is the angle 
between B, and g. 

At a fixed frequency cross-sections of the wave normal surface taken through 
planes Y’ = constant are as shown in figures 2 (a), (b )  and (c) .  

When w < cosu the Alfvh wave planes X‘cos a+ 2’ cosu = 5 w cut the 
gravity wave cone in ellipses and the resulting wave normal surface is closed, as 
is shown in figure 2 (a) .  The wavenumber Y’ is limited to the range 

)Y ’cosaJ  < l-( l--d)% (14) 

When 1 > w > cosa the Alfven wave planes cut the gravity wave cones in 
hyperbolas and the cross-sections of the wave normal surface have the shapes 
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FIGURE 2. For legend see facing page. 

shown in figure 2 (b) .  In  the plane Y’ = 0 the cross-section is asymptotic to the 
lines 

The wavenumber Y’ is again restricted by relation (14). 

surface is asymptotic to the planes 

Z‘cosa+X’sina = (w2-c0~2a)4. (15) 

Figure 2 (c) illustrates the wave normal surface when w > 1. For Y’ 9 1 the 

X’sina+Z‘cosa = rf: (w2- I)+, (1-6) 

while for Y’ < 1,Z’ 9 1 and X’ 3 1 the surface is asymptotic to the plane defined 
by (15). Therefore the surface can be visualized as a plane, given by (16), with 
asymmetric bumps either side of a line which lies in the surface and whose equa- 
tion is 

As has been pointed out by Lighthill (1967), figure 2(c) is important because it 
indicates that in the presence of a magnetic field a wave which started out being 
predominantly of the gravity-wave type can be transformed to an Alfvbn wave 
and therefore avoid being reflected at 5t height where the Brunt-VBisala frequency 
equals the wave frequenoy. (This property may be used as a possible mechanism 
to explain the existence of Alfv6n waves in the solar wind.) 

X‘sina = (w2- I)+. (17) 
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FIGURE 2. Cross-sections of the wave normal surface for hydromagnetio-gravity waves at 
a fixed frequency for various values of the normalized wavenumber Y'. ct = 45' (a)  w < cos ct 
(W = 0.65). ( b )  1 > w > C O S ~  (W = 0.866). ( C ) W  > 1 (W = 1.2). 

More important for our present purpose is that since the asymptotes of the 
wave normal surface (figures 2 b ,  c) are perpendicuh to the magnetic field 
direction i t  is clear that a critical level can only exist if the direction of spatial 
variations (in either magnetic field or density) is perpendicular to the magnetic 
field. Consider the case where B is paralleI to  the x axis and g lies in the x ,  IL: plane, 
making an angle a with the x axis, and spatial variations in B are in the z direc- 
tion. Prom (1 1) we find that the wave normal curve in ks, kz plane has an asymp- 

Since the asymptotes for hydromagnetic waves are symmetrically placed with 
respect to  the magnetic field we henceforth limit our discussion to kx > 0. Taking 
kx 0 > and comparing (IS) with ( 6 )  we have that 

k ,  = (02-N2(2) cos2a)*/b(z) (p = l), (19) 

in the case of coupled hydromagnetic-gravity waves. 
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FIGURE 3. Ray trajectories for hydromagnetic-gravity waves in the frequency range 
N > o > Ncosu (w/kz  > 0 )  propagating in the plane containing g and B. (a) 6 decreasing 
with z, k, > 0. ( b )  b increasing with z,  k, c 0. ( c )  b decreasing with z,  k, > 0. (d )  b decreasing 
with z, kz < 0. Cases (b )  and (c) exhibit critical levels. 

Thus we see that at  a height z = zc where the Alfvbn speed takes the value given 

bY kz = (o2- N2(2,) cos2a)qb(zc) 

a wave packet approaches the x axis (the direction of magnetic field) in the fashion 

x - 1/lzc-21. 

le, l / /km-kl*,  

x N l / Izc-z[*, 

In  the special cases CI = &r or 0 (i.e. g perpendicular or parallel to B) the asymp- 
tote is of the form 

so that the ray approaches a critical level in the manner 

where z, is given by 
w/kz = b(z,), a: = in, 

or (w/kz)  (1 - N'(z,)/w~)* = b(zc) (a = 0). 

Typical ray trajectories can be readily determined by using the geometry 
of the wave normal surfaces. We have done this to construct figures 3 and 4, 
which show typical trajectories for the case of N constant and b either increasing 
or decreasing smoothly with z. Figure 3 applies to the case when N cos a: c o c 1 
and the ray propagates in the plane containing g and B. Cases (a) and (b )  exhibit 
critical levels. We note that if k, 9 0, that is if the wavenumber vector has a 
component perpendicular to the plane containing g and B, critical levels could 
not exist in this frequency range since the wave normal curves (see figure 2 b)  do 
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FIGURE 4. Ray trajectories for hydromagnetic-gravity waves, at frequencies w > N 
(wjlc, > 0), propagating in the plane containing g and B. (a) b increasing with z. ( b )  b decreas- 
ing with z. In both cases the ray approaches the critical level from beneath. If the wave- 
number vector has a component out of the plane containing B and g the ray trajectory in 
the z,  x plane is similar to the ray trajectory for k, = 0 and lies between it and the z axis. 
These trajectories illustrate the ‘ valve effect ’. 

not possess asymptotes. The ray trajectoriesshowninfigure4applyfor frequencies 
greater than the Brunt-Vaisala frequency. The critical levels are approached 
from below, z < z,. If kv $: 0 the corresponding ray trajectory in the z, z plane 
would be similar to the ray trajectory for Ic, = 0 and would lie between it and the 
critical level. We also note that these trajectories illustrate that the critical 
level for such waves acts like a ‘valve’ in the sense that the ray can pass through 
the critical level from above but not from below. 

If g is either parallel (a = 0) or perpendicular (a = +n) to the magnetic field the 
valve effeck disappears and the ray trajectories are of the same type as those for 
slow magnetoacoustic waves (see figure 6). The disappearance of the valve effect 
when a = 0 or &r is closely linked with the symmetry of the wave normal curves 
about the magnetic-field direction. 
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FIGURE 5. Cross-section of the wave normal surface for magnetoacoustic 
and Alfv6n waves (sketched for c > b) .  

4. Magnetoacoustic waves 
The theory of the propagation of magnetoacoustic waves in a perfectly con- 

ducting, inviscid, compressible medium has been extensively developed (see 
Lighthill 1960, and many others). The dispersion equation for magnetoacoustic 
waves is given by 

in which c is the sound speed and it is assumed that the magnetic field is parallel 
to the x axis. Figure 5 shows the shape of the wave normal curves (the wave 
normal surface is obtained by rotation of the wave normal curve around the k, 
axis). We see immediately from (21) and figure 5 that the wave normal curve 
appropriate to the slow magnetoacoustic wave is asymptotic to the lines 

k, = * w( 1/c2+ l/b2)% = * k,. (22) 

Thus, if the properties of the medium (such as the sound or Alfv6n speeds) vary 
in a direction z which is perpendicular to the magnetic field, a critical level can 
exist for a ray of given w and kz at z = z,, where z, is given by 

kz = w( l/c2(2,) + l/bZ(Z,))*, 

x - 1/[z,-zl+. 

(23) 

and the ray approaches the critical level in the manner 

A sketch of the ray trajectory is shown in figure 6 for the case of either b or c 
monotonically increasing or decreasing with z. 
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FIGURE 6. Ray trajectories for the slow magnetoacoustic mode exhibiting critical-level 
behaviour. (a )  6 (or c) increasing with z. ( b )  b (or c) decreasing with Z. Z, is given by 

w/lc, = ( ~ / c ’ ( z , )  + l / b 2  ( 2 , J - f ;  

Z, is given by w/kz = min(c(z,), b(z,)). 

5. Hydromagnetic-inertial waves 
The dispersion relation for plane hydromagnetic waves in a highly conducting, 

incompressible fluid rotating with angular frequency 8 is (see Lehnert 1954 or 
Hide 1969) 

Equation (24a)  may also be written as 
[ ~ 2 - ( b . k ) ~ ] ~ k 2  = ( 2 8 . k ~ ) ’ .  (24a) 

in which 

w = 0/2Q, R‘ = (X’, Y’,Z’) = k/(2Q/b), & = b/b = (sina,O,cosa), 

where a is the angle between the magnetic-field direction and the X’ axis and 
we have taken 8 t o  be parallel to the 2’ axis. 

Equation (24b) is a more convenient form for exploring the geometry of the 
wave normal surfaces. There are two distinct surfaces corresponding to which 
there are two modes of motion which may be classified as the ‘fast’ and ‘slow’ 
modes according as the phase speed of the mode is faster or slower than the Alfvbn 
speed. 

Cross-sections of the two wave normal surfaces taken through planes Y’ = con- 
stant are shownin figures 7 (a) ,  ( b )  and (c) for three separate frequencies. The cross- 
sections of the wave normal surface corresponding to the fast and slow modes are 
d r a m  as broken and full lines respectively. When w < sina the Alfv6n wave 
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FIGURE 7. For legend see facing page. 

planes R . f; = & w, cut the inertial wave cone in hyperbolas and the resulting 
wave normal surface for the fast mode is as shown in figure 7 (a). When 

1 > w =. sina 

the Alfvhn wave planes cut the inertial wave cone in ellipses and the ‘fasb’ 
wave normal surface is of the type shown in figure 7 ( b ) .  In  the case w > 1 the 
‘fast’ wave normal surface is as shown in figure 7 (c). This sequence of shapes for 
the ‘fast’ wave normalsurface indicates that the inertial mode can be transformed 
into an Alfvkn mode and therefore avoid being reflected at any level where the 
rotation frequency drops to half the wave frequency. 

Both wave normal surfaces are folded along the lines X’ = 5 w. The basic 
shape of the wave normal surface associated with the slow mode is unchanged by 
varying the frequency. The slow mode is predominantly an Alfv6n wave modified 
by the action of the Coriolis force; the effect of the latter becomes particularly 
pronounced at very low frequencies (w < 1) and results in wave propagation 
at  speeds very much slower than the Alfvkn speed except for propagation cor- 
responding to the region of the folds. I f  (b . k)2 < (a. k/k)2 the propagation of 
the fast mode is described by the inertial wave oone 

while the slow wave propagates according to the equation 

w2 = (2S2. k)2/k2, 

u2 B (b . k)* k2/(2S2. k)2. 

(25 4 

(25 b )  
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FIGURE 7. Cross-sections of the wave normal surfaces for hydromagnetic-inertial waves, 
through planes Y' = constant. - , slow mode; ---, fast mode. ( a )  w < sina (w = 0.5). 
( b )  1 > w > sina(w = 0.866). (c) w > 1 (W = 1.2). u = 45". 

F L M  58 46 
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FIGURE 8. Sketch of the cross-sections of the wave normal surface for the slow mode in the 

k ,  = (w2R sin a)a/b, k,  = (ozs2)*/b. 

approximation (b. k)a < (a. k/k)2 (equation (25.b)) .  ___ , k ,  = 0; ---, k, =!= 0. 

This mode is of paxticular importance in hydromagnetic oscillations of the earth’s 
core (Hide 1966, Hide & Stewartson 1972). Because this form accentuates certain 
features that are not too obvious in figure 7 we have sketched, in figure 8, the 
wave normal curves in the kc, k,  plane for Ic, = 0 and kv + 0. 

Figures 7 and 8 show immediately that critical levels can occur only if the 
medium varies in a direction z perpendicular to the magnetic field. Taking B 
parallel to the IL  ̂ axis, 8 = Q(cos a, 0, sin a) and restricting attention to wave pro- 
pagation in the z ,  x plane we find that the wave normal surfaces (given by equa- 
tions (24)) possess asymptotes of the form 

in which kkaf = (02k 2wQsina)/b2(z). (27) 

The asymptotes kz = 5 kas( kmf) belong to the wave normal surface correspond- 
ing to  the slow (fast) mode. (The fast mode wave normal surface possesses real 
asymptotes provided that o > 2Qsina.) 
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FIGURE 9. Ray trajectories for propagation in the plane containing Q and B for the slow 
(8) and fast ( P )  hydromagnetic-inertial waves. - , for a general value of a; ---, a = 0. 
The slow (fast) mode approaches its critical level from below (above). The trajectories (for 
a + 0) illustrate the ' valve effect' for hydromagnetic-inertial waves. At the point where the 
ray trajectories intersect mode conversion takes place so that the slow (fast) mode is trans- 
mitted through this point as the fast (slow) mode. (a) b increasing with z. ( b )  b decreasing 
with z. 

By comparing (27) and (26) with (6) and (5) respectively we can say immedi- 
ately that critical levels can exist at a height x = x, given by 

k, = o(1 2Qsina/w).t./b(z,), (28 a) 

and the ray trajectory becomee 
x N l / ~ x c - x ~ ;  

the plus (minus) sign in (28a) refers to the slow (fast) mode. 
In  the special cases a = 0 (rotation axis aligned with magnetic field) and a = 

(rotation axis perpendicular to the magnetic field) the ray approaches the critical 
level in the fashion x N Izc- 21-4, where zc is now given by 
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Typical ray trajectories for both the slow and fast modes are shown in figure 9. 
The reflexion points occur at  a height x = zo given by 

(29) k, = [o(w -t 2Q)4/b(z0). 

At a height where the horizontal phase speed matches the Alfven speed the ray 
trajectories for the slow and fast modes possess a common point (which arises 
from the fold in the wave normal surfaces) at which a mode conversion takes place. 
For example, in figure 9 (a), at this point the downward-propagating slow mode 
is converted to the fast mode which is captured at  its critical level, whereas the 
upward-propagating fast mode is converted to the slow mode which approaches 
its critical level from below. We note in passing that within the framework of 
geometric optics (WKBJ approximation) it is not possible to predict whether 
total reflexion or transmission occurs at  the height where the Alfven speed 
matches the horizontal phase speed. However, without going into a full wave 
calculation, there are two reasons for predicting mode conversion at this point. 
The first reason favouring total transmission is that the energy flux is continuous 
a t  this point (Acheson 1972). The other is that the sense of polarization of the 
wave is preserved by mode conversion at  this point. 

The ray trajectories for a = 0, drawn as broken lines in figure 9, show that the 
valve effect ceases in this special case essentially because the point at which 
mode conversion takes place (i.e. where the Alfv6n speed equals the horizontal 
phase speed) moves to  x = + co in case (a) and x = - co in case (b ) .  

6. Discussion 
The application of the condition for the existence of a critical level to the vari- 

ous hydromagnetic waves discussed in this paper implies that critical levels for 
such waves can exist only if the properties of the medium through which the 
ray propagates vary in a direction perpendicular to the ambient magnetic field. 
In  this sense critical-level behaviour is exceptional. 

We have also shown that critical levels for hydromagnetic waves of the inertial 
and gravity type exhibit ‘valve-like’ behaviour, provided that % (or 51) is 
neither aligned with nor perpendicular to the magnetic field. 

The analyses of Acheson (1972) for hydromagnetic-inertial waves and Rud- 
raiah & Venkatachalappa (1972) for a special case of hydromagnetic-gravity- 
inertial waves, both of which follow Booker & Bretherton (1967), show that the 
waves are in fact transmitted across a critical level but are heavily attenuated 
in doing so. On the basis of the boundary-layer-type analysis for gravity waves 
performed by Hazel (1967), who obtained the same attenuation factor as Booker 
& Bretherton (1967), it seems reasonable, as Acheson points out, to expect that 
dissipation is not very important in determining the overall properties of critical 
levels. 

It is not yet established whether hydromagnetic critical levels do or do not 
exhibit the strong dynamic interaction with the back-ground state that gravity 
waves do by transferring their energy and momentum to the mean flow near 
their critical levels. I n  contrast to gravity waves in a shear flow, hydro- 
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magnetic waves still propagate relative to the background near critical levels a t  
which they exhibit a dramatic increase in wave energy density similar to that for 
gravity waves. 

We also wish to emphasize that in some sense critical-level behaviour is a symp- 
tom ofthe WKB J approximation. The other asymptotic limit in which the mathe- 
matics is tractable, i.e. when the vertical wavelength is much larger than the 
scale length of the variation in properties of the medium, gives different results. 
For example a study of the reflexion and refraction of gravity waves at  a sharp 
wind shear (McKenzie 1972) shows that those waves that would have been ab- 
sorbed a t  a critical level in the WKBJ approximation are in fact reflected and 
refracted at the wind shear, from which they now extract energy and momentum. 
A similar study of magnetoacoustic waves incident upon a current-vortex sheet 
(McKenzie 1970) also exhibits the phenomenon of wave amplification. Similarly, 
hydromagnetic waves of the gravity or inertial type incident upon a sharp gradi- 
ent of the magnetic field (a current sheet) will be simply reflected and refracted in 
a manner determined, essentially, by Snell’s law and the boundary conditions 
appropriate t o  the discontinuity. In  this latter case, however, the phenomenon 
of wave amplification will not arise if there is no relative streaming motion (shear 
flow) which can give rise on either side of the discontinuity to  the existence of 
positive and negative energy waves which interact in the presence of the shear to 
produce wave amplification. Although the phenomena of wave amplification 
and instability are both related to the presence of streaming motion it is 
important to recognize that they are quite distinct since the criteria for their 
occurrence are different. 

The author wishes to thank Eric Jamin for helpful discussions and Jan 
De Leeuw for performing the numerical computations for figures 2 and 7. 
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